
LLNL-TR-401200

FY07 LDRD Final Report A Fracture
Mechanics and Tribology Approach to
Understanding Subsurface Damage on
Fused Silica during Grinding and
Polishing

T. I. Suratwala, P. E. Miller, J. A. Menapace, L. L.
Wong, R. A. Steele, M. D. Feit, P. J. Davis, C. D.
Walmer

February 11, 2008



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



FY07 LDRD FINAL REPORT
A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on 

Fused Silica during Grinding and Polishing
05-ERD-067

Tayyab Suratwala, Principal Investigator

Co-investigators: Phil Miller (CMS), Joe Menapace (CMS), Lana 
Wong (CMS), Rusty Steele (CMS), Mike Feit 
(NIF), Pete Davis (Eng), Dan Walmer (NIF)

The objective of this work is to develop a solid scientific understanding of the creation 
and characteristics of surface fractures formed during the grinding and polishing of brittle 
materials, specifically glass. In this study, we have experimentally characterized the 
morphology, number density, and depth distribution of various surface cracks as a 
function of various grinding and polishing processes (blanchard, fixed abrasive grinding, 
loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive 
particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, 
pad) were examined. The resulting data were evaluated in terms of indentation fracture 
mechanics and tribological interactions (science of interacting surfaces) leading to several 
models to explain crack distribution behavior of ground surfaces and to explain the 
characteristics of scratches formed during polishing. This project has greatly advanced
the scientific knowledge of microscopic mechanical damage occurring during grinding 
and polishing and has been of general interest. This knowledge-base has also enabled the 
design and optimization of surface finishing processes to create optical surfaces with far 
superior laser damage resistance.

There are five major areas of scientific progress as a result of this LDRD. They are listed 
in Figure 1 and described briefly in this summary below. The details of this work are 
summarized through a number of published manuscripts which are included this LDRD 
Final Report.

In the first area of grinding, we developed a technique to quantitatively and statistically 
measure the depth distribution of surface fractures (i.e., subsurface damage) in fused 
silica as function of various grinding processes using mixtures of various abrasive 
particles size distributions.  The observed crack distributions were explained using a 
model that extended known, single brittle indentation models to an ensemble of loaded, 
sliding particles. The model illustrates the importance of the particle size distribution of 
the abrasive and its influence on the resulting crack distribution. The results of these 
studies are summarized in references 1-7.

In the second area of polishing, we conducted a series of experiments showing the 
influence of rogue particles (i.e., particles in the polishing slurry that are larger than base 
particles) on the creation of scratches on polished surfaces. Scratches can be thought of a 
as a specific type of sub-surface damage. The characteristics (width, length, type of 
fractures, concentration) were explained in terms of the rogue particle size, the rogue 



particle material, and the viscoelastic properties of the lap. The results of these studies are 
summarized in references 6-7.

In the third area of etching, we conducted experiments aimed at understanding the effect
of HF:NH4F acid etching on surface fractures on fused silica. Etching can be used as a 
method: a) to expose sub-surface mechanical damage, b) to study the morphology of 
specific mechanical damage occurring by indentation, and c) to convert a ground surface 
containing a high concentration of sub-surface mechanical damage into surface 
roughness. Supporting models have been developed to describe in detail the effect of 
etching on the morphology and evolution of surface cracks. The results of these studies 
are summarized in references 8-9.

In the fourth area of scratch forensics or scratch fractography, a set of new scratch 
forensic rule-of-thumbs were developed in order to aid the optical fabricator and process 
engineer to interpret the cause of scratches and digs on surfaces. The details of how these 
rules were developed are described in each of the references included in this summary (1-
9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs 
that have been developed in this study.

In the fifth and final area of laser damage, we demonstrated that the removal of such 
surface fractures from the surface during optical fabrication can dramatically improve the 
laser damage resistance of fused silica optics exposed to high-peak power laser light. This 
effort involved utilizing the techniques and scientific understanding developed in the four
areas described above and implementing them to design, facilitize, and monitor optical 
fabrication processes to create surfaces that contain little or no sub-surface mechanical 
damage (See Fig. 3).
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Figure 1: Five major areas of scientific progress that was achieved as result of the LDRD 
effort (05-ERD-067).
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We have developed a set of rules-of-thumb to 
perform forensics of the cause of surface fractures
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Figure 2: A summary of some of the scratch forensic rules-of-thumb that have been 
developed.
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Figures 3: (a) Plot of the laser damage density as function of 3ω laser fluence illustrating 
the dramatic improvement in laser damage resistance of fused silica surfaces as result of 
removing surface fractures by improvements in optical fabrication. (b) FODI images 
from the NIF laser illustrating the improved laser performance which has been strongly 
influenced by the improvement in optical fabrication of the fused silica surfaces.


